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Introduction

I D is a finite set of positive integers

I S ⊂ N called D-avoiding if there do not exist x , y ∈ S such
that x − y ∈ D

Example

I {1, 4, 5, 8, 11} is {2, 5}-avoiding

Example

I {1, 3, 5, 7, · · · } is {1, 5}-avoiding
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Subset Generating Function
I for a subset S , define the generating function

Sq =
∑
n∈S

qn

I to compare the size of two subsets A and B, compare the
germs of Aq and Bq as q → 1−, i. e. when q = 1− ε

I If Aq > Bq when q = 1− ε, we write A � B

Example

I A = {0, 2, 4, 6, · · · }
I B = {1, 3, 5, 7, · · · }

I Aq = 1 + q2 + q4 + · · · = 1
1−q2

I Bq = q + q3 + q5 + · · · = q
1−q2

I =⇒ A � B
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Propp’s Theorem

Theorem (Propp)

Every germ-maximal D-avoiding subset S of N is eventually
periodic.



Periodicity Implies Rationality

Lemma
Eventual perioicity implies that the associated Sq is a rational
function.

Example

For S = {0, 1, 3, 4, 6, 7, 9, 10, · · · },

Sq = 1 + q + q3 + q4 + q6 + q7 + · · · =
1 + q

1− q3
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Our Extension: Germ Maximality in Z

I generating function workaround:

Sq =
∑
n∈S

q|n|

Theorem (Extension of Propp)

Every germ-maximal D-avoiding subset S of Z has rational Sq.

I Conjectures
I Any germ-maximal subset of Z is completely periodic.

I Not true in N.
I When D = {1, 4, 7},

{0, 1, 3, 6, 9, 15, 18, · · · } � {0, 3, 6, 9, 12, 15, 18, · · · }

I Any germ-maximal subset of Z contains 0.
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Density

I Density of S defined by

δ(S) = lim
n→∞

|S ∩ {0, 1, 2, · · · , n}|
n + 1

I Alternatively
δ(S) = lim

q→1−
(1− q) · Sq

Example

The density of {0, 2, 4, 6, 8, · · · } is 1
2 .
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Maximal Density of D-avoiding set

I Maximal density of a D-avoiding set is defined by

µ(D) = sup{δ(S) : S is D-avoiding}

I Goal: determine µ given D
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Lower Bound on µ

Theorem
We have µ(D) ≥ 1

|D|+1 .

Proof.
Use the following algorithm to greedily build S .

1. Put 0 ∈ S .

2. Put all x + d ∈ S ′ for all x ∈ S and d ∈ D.

3. Put the smallest positive integer not currently in S or S ′ into
S . Return to step (2).
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Lonely Runner Number

I ||x || = min(dxe − x , x − bxc)
I ||tD|| = mind∈D ||td ||

I Lonely runner number

lr(D) = sup{||tD|| : t ∈ R}

Conjecture (Lonely Runner)

The lonely runner conjecture conjectures that lr(D) ≥ 1
|D|+1 for all

D.
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Connection to Density

I Cantor and Gordon proved that µ(D) ≥ lr(D) for all D.

I Agrees with earlier claim; we have

µ(D) ≥ lr(D) ≥ 1

|D|+ 1
.

Conjecture (Harlambis)

For |D| = 3, we have µ(D) = lr(D).



Connection to Density

I Cantor and Gordon proved that µ(D) ≥ lr(D) for all D.

I Agrees with earlier claim; we have

µ(D) ≥ lr(D) ≥ 1

|D|+ 1
.

Conjecture (Harlambis)

For |D| = 3, we have µ(D) = lr(D).



Connection to Density

I Cantor and Gordon proved that µ(D) ≥ lr(D) for all D.

I Agrees with earlier claim; we have

µ(D) ≥ lr(D) ≥ 1

|D|+ 1
.

Conjecture (Harlambis)

For |D| = 3, we have µ(D) = lr(D).



Future Directions

I Explore new special classes of sets D. For example, the cases
of finite arithmetic and geometric series have already been
completely solved, as well as many classes of three element
sets of the form {1, j , k}.

I Bounding µ from above in terms of lr or some other value;
currently we have no way of even quickly determining a
maximal upper bound on the value of µ.

I Find out exactly when equality holds in the Theorem and
other cases discussed above.
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